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_J_RRMOFACTIVITIES

During the period of this grant, the authors _ in implemnting

four out of the required six _--_,_s recessary to define the spatial

resoluti_ _ of candidate spacekxn_e microwave imaging systems.

A brief a4_a_,_ion of these cc!ponm_ts follows; more complete d/scussions

are uontainad in the conf_ publication in Appendix A and the draft

technical publication in Appendix B. It is noted that precipitation

•_umrmmmts (e.g., surfacs rain rates and water density and phase

profiles) place the most severe demands of any _ical cksemvable an

the spatial r_olution, ao:uracy, and _ coverage of a mi_

imaging system [_ and Brown, 1991]. Thus, we have targeted accurate

and timely precipitation _ as constituting the driving

requlmmmm_:s of such sensors. Our choice of maritime (as upposed to

continental) precipitation is based on the greater utility of a spaceborne

precipitation msasuranemt _ in observing the Earth aver relatively

_ible oceanic regicms rather than land.

fl) ._,I ml _c,_h_-___I cloud and rain a_te. In order to derive

realistic assessments of the perf_mmncs of candidate sensors,

statistically _ cloud and raincell data has been obtained. Three

saurues of data are used: (A) Simulated _ianal inimical

data from the Goddard Cumulus Ensemble model [Tao and simpson, 1889]. This

o_sists of five frames sampled _ the lifetime of a convective

squall. The prevailing c_mlitians are based on okmerved data frum the

Global Atmospheric Research Program's Atlantic Tropical Experiment (GATE).

(B) A volm_ waather radar scan of an isolated multicell systa_ ctmerved

durlng the C_perative Huntsville F_orological Experiment ((XI_EX, 1986)

[Casiemkl, 1989]. (C) Synthetic cloud and _1 data based upon

publish_ spatial and tmpcral statistics of rainfall.

(2) Forward radiative transfer model. Brightness maps for the above

data at virtually all micruwave channels considered to be useful for

_ic precipitation sensing have been oumputed using the iterative
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radiative transfer model described by Gasiewski and Staelin [1990]. These

maps constitute a set of "full resolution" images from which particular

Qhannels subsets can be selected to study the performance of a candidate

set, or. The channels under ccr_ideration are at micr_ve window

frequencies fra_ 6 to 410 GZ4z (9 c_nr_.Is), r4ar the 22.235-, 183.31-, and

325.15-(_z _ter vapor lines (i0 c_anne/s), within the 5-ram cxy_.n band (5

_els), and rear the 118-GHz _ line (6 chamm/s).

(3) Ar_emna oain pattern ounvolutions. Spot partem%s for diffraction

limi_ad clnmler apenmres are generated to provide the m_tispectral point

_mmad _ that w_ld be expected from a car_Udate sensor. Each

_sumel is assumed to be diffraction limited, so that the multispectxal

spot pattern exhibits successively decreasing 3-dB spot sizes as frequency

increases. Currently, the degree of aperture illumination taper is

selectable so that the effects of varying aperture efficiency and taper on

the resulting retrieval accuracy can be studied. The candidate systa_ used

in the simulations are the three _ referred to in Appendix B: the

EC6-B MIMR L_D _ with 1.6- and 4.4-_ _, and the i_rge Space

A.t na (LSA) (6410 and ei t- u e/ (18-55GHz)

with 15- and 40-m apertures. _e submillim_er _ _mrmels in the

resolution far raincell mapping using only moderately-sized apertures

[Gasiew_i, 1992].

The multispectl-al spot patterns for a canal/date sensor are convolved

with the full resolution imaqery to obtain the anterma tem_.zature imagery.

imagery is _eqt_ly sampled at the _ resolution, effectively

simulat/ng the antenna scan _. After convolution, an _iate

i.stnment errormap is ack a to s .ulate radiometric noise in

the _ eigmal. _e noise level is _ from the spot dw_ll

tim_, th_ mceiver noise t_zature, and the _ bandwidth, since

these quantities can var_ considerably among candidate designs, a

r_tive set of receiver characteristics consistent with the pr_

_ low-Earth orbiting system an_ the L_RC Large Space Anterma (LSA)
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(4) Yarhunen-lmeve _moe S_R anal_v__, q_e _%rhunen-ioeve (KL)

transform _ u_d to estimate the number of okmarvable spectral degrees of

fresdom in the noisy, am_olved (received) imagery, t_3on p_tening the

received im_jmry (so as to _ channels on a noise-equivalent

basis), the KL transform _ms computed. The eiqm_ralues of the KL transform

are the 8i_Ll-bo-r_ise z'atio6 (S_R's) of the _ated _

of the imagery. Oompam_ to the full-resolution case, the MIMR imagary

e_bits reduct/ons of 1 to 3 dB in the SNR's of the seccr_- and third-

_ mode8 for 4.4-m and 1.6-m d/ameter _. ReducT/cr_ in

S_R for Moond- and third-most dominant modes in the LSA 40-m and 15-m

are larger (up to 10 dB or more). _e dominant modes in these

systmm exhibit no significant SNR _ors from the full resolution case

to either of the respective smaller apertures.

Howmver, the interpr_ation of the KL modes and the associated SNR's

for various spatial resolutions cannot be considered to be complete until

these mode are incorporated into the precipitation parameter retrieval

(S) _._4_ _a_wolut_on s__, Although not yet implY,

the __a _Ap o_ mul_ d_xmvoluti_ is _ to

si_plii_ _ ruu:_g p_clpi_ti_ ret_-leva_ _ :_x=_c.i_._L.g_e

_u:_ _iq_r_e_ _ to _e bes_ _ t:_:_aible. :n the

_l_.ion, theme will in_itably be a tz_zk_ff between the z_p.tlting

spatial resolution and noise in the _ived imagery. It is the

mm%ifemtation of this _ff on area-averaged precipitation retrieval

error %_llch is of primm _. _le imagery frcm cm_nen_s 2-3 will be

u_ful h_m in determining ogc_mm de,x_luti.,:m filtars ba_d on the

_ _ _atlsti_ of the _rlying fu11-r_oluti_ im_xy.

(6) _ rain rat_ retrieval error aw* _w__. _ final and

i_t_m_.io.) _ mn-_a_ rain rate, fr_zL.g _tim:_ and _ter

_mmity and phase profile estimates based on the received, _olved

Two nmnlinmr _t_cai _, both optimal in their use of the
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received data, are currently being imp1_: (A) the single-step

nanlinear-mtatistlcal retrieval m_chod, which uses KL rank reduction to

red_K_e the number of input channels prior to estimating surfaoe rain rate

and water _msity, and (B) the iterative statistical _, which uses the

f_"._d radiative transfer relationships to detezm/2_ m/ccessive linear

statistical __s to the r_crieved parm_Tars. Both of these methods

have been previously _ [Gasiewski and Staelin, 1989; E_o, 1990].
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OCl{{_L]EICI6NID PIJlE FOR I W:I_

Ocn=lusionl from the first four of the six o_.4--_Ls of the simulation

study, including i_amples of full rwoluticm, am_olved, and Yarrmmen-lmeve

imeqezy are _ primarily in the r_. "Simulatians of the Effects

of Spatial Resolution on Passive Micz_mve _ Semsing of

emcipltation", in _ope.dlx B. A1tbou_ the q_antitativeeffects of

size, main beam efficiency, channel selection, and anterma gain

parturba_ ca simulated precipitation retrieval accuzacy carrot yet be

given I, mevmral obmez%_tlorB _ effects on the received imagea_ and

auociated _L imagery can be m_e.

An i_ feature is that the KL eigenve_s are relatively

of stozm type, nor do they depend critically on the stage of

the rainoall. In addition, the eigmflvectors change only marginally as the

aperture _ (i.e., sys_m resoluti_) _.ges. These obser_tlo_

mxjg_t that the dominant modes of spectral variation in micr_ave

p_ecipltati_1 iMagmzy are effectively unique for a given set of mcrowave

d6mrelml_. ]M_mvar, as spatial resolution is lo_t, the eige_vectors

om_olwa imagery and _L mode signalise (ram) analysis

unmbi_i_mly m_ow a I_ in spectral varianoe as apertuze size is red_ced.

Far the aperturl considered, the size reductio_ usually reduce the S_ in

the _ m_e by only _ne _r two dB. but reduoe the hi_er order m_des

b_ much more (up to lo dS). The number of degrees of free_om in the

mtlti_ ixmclpi_a_i_ imagery varies for the different s_

analyzed, but is ap_tely three to five. Although the effect that the

_L _ _ cn the accuzacy of precipitation _ zetrieval is still

to be quantified, the loss of informticn as aperture size is r_atz_d is

In _ radic_, anterma main beam aff_ of at 90-95%

ar_ _i_r_ to be raguired if _ec_T_ol_ is not used. Note that this

i Future w_k on the prtW_)lm of passive _a_Itimp_
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is the nu11_l efficiency, as 3-dB efficiencies greater than 50-55%

cannot practically be ad%ieved. Such main beam efficiencies will require

tapered aperture ill%mdnaticra, as uniform tapers cannot yield main beam

efficiencies greatar than 86%. Huwever, tapering neuessarily reducing the

system resolution. If the _ pattern is known precisely enough, some

deconvoluticm can be perfozmsd. By modelling the effects of antenna gain

_rtalnty as a_dltlmal remiver noise (as shown in Appendix B, section

4), the _ffs _ the gain _ertainty, calibraticm uncertainty and

illumination taper can be studied.

Sa_ ommm_m must be made about the spatial sampling rate of micr_mve

imp. _tu[la it is uommonly thought that sampling in _t...i.=_1

equal to the 3-dB footprint of the antenna is adequate for passive

mi_ imaging, this is, in fact, at least two to four times larger than

the _ sampling _. Thus, there is no guarantee against

aliasing in any system that samples at the "3-dB" rate. Of course, Nyquist

sampling requires significantly higher data rates and potentially higher

mm_mnical slew rates than 3-dB sampling. One of the tradeoffs to be

mmdi_ using the Reins will be the oo.mqum,_ of aliasing in sub-Nyqui_

Future simulation studies will utilize the KL modes in nonlinear

precipitation _u_mter retrim_l m_/_s. _e first method, _y

being dm_l_, will use a n_linear single-st_ estimator whi_

oozTalatem the EL modes with rain rate. Suhmeqt_ntly, an iterative sd_me

using a linear statistical operator at each step will be investigated as a

means of imprcwing the performance of the single step ncnlinsar c_atcr.

_he retrieval operatnrs will incorporate spectral-dcmain multispectral

deaonvolution operators [R_enkranz, 1978] to impruve the resolution of the

br_ maps prior to inversian for the following paramAters: surface

rain rate, _mter density at five levels, mean ice particle size, and

altit_le of IKr.leatlon. The analyses will attempt to address 1.6-m and 4.4-

m _D _ as well as the three systa_ a_reesed in _ B.

A_lltional three dlm_nsional raincell m/cro_ical data will be inolu_d

as availahle.
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OF Poor Q!-_ALITY

PASSIVE MICROWAVE PRECIPITATION MAPPING
AND RETRIEVAL SIMULATION

G. M. Skofronick aud A.J. Gasiewski

School of Electrical Engineering

Georgia Institute of Technology
Atlm)ta, GA 30332-0250

Ab=tracbA numerical simulation of the satellite.based mul.
tispe¢_aive microwave mapping and precipitatio, retrieval
proceu is described. The simulation contains tlu-ee major con)-
parrots: (I) the forward radiative transfer calculation, (2} the
ran*or observation simulation, and (3) the precipitation retrieval
&llp_'ithm. Secondary components include a Karhunen-l,oi, ve
transformation module and antenna pattern deconvohflion mod-
ule. "]'he simulation facilitates tile investigation of ca,(lidate
pre¢ipitaiion retrieval algorithms using sub.Nyquist brightuess
temperature bnagerv a,d t])e compariso, oF the relative merits
of proposed radiom¢;tric systems such a_ the has Multislmct ral
Imaging Microwave Radiometer (MIMIt), the TItMM Microwave

lmaser (TRMM TMI), and future g.eosynchronous satellite sen-
Io11, A procedure for retrieving ran rates usiug a statistical
iterative approach i, outlined.

I. Introduction

In latei|ite-bak"d p_aive remole =ensing, boll, microwave
and infrared frequeucies are common)y used to ol_erve proper.
tle, of atmmpheric hydrometeor=. An imports,It feature o1"in-
flared imasery it the a_ailable high spatial resolutip,1, llowever,
due to the large extinction st infrared wavelenglhs, sucll sen.
*ors are unable to l)robe through mos! cloud cover. Relative to
infrared sensing observations, nuiltifrequencv nlicrowave _nsing
provides a valuable complementary capabilhy i_ being able to
probe through clouds. This ispossible to a desree whicll depends
on tile particular frequency of observation and the hydrometeor
density and size distribution. For example, frequencies below
_, 6 G'II= respoud significantly to only very strong l)recipilation,
while frequencies above ,,, 220 GH= respond to even light non-
precipitating cloud_ such as cirrus.

The relative simplicity of the forward trausfer relationship
at microwave frequencies along wilh the wide availablr range of
optical deptlm sugge, ts that profiling of various l)recil)itation pa-
rameters (e.g. rain rate and hydrometeor density, size, and I)hs_)
might be possible. I{owever, the non-linear relationstdp between
area-averaged precipitatiou parameters and tile observed bright-
ness temperatur_ ,s a major cauMe of error in retrieving these
parameters, lmpedhneut, to improving retrieval accuracy in-
clude: (1) sub-Nyquist spatial sampling caused by wide susanna
bel, mwidth|, (2) radiometric instrmnent noi_, and (3) autenna

calibration and gain pattern nncertainty. Since the technological
emts for overcoming these impediinents are high, it is of vital
importan¢e to determine the available performance of ea,didale
spaceborne sensor systems for cost/beuefit tradeolT l)Url)oses.

To _sess tile relative merits of various passive nficrowsve
precipitation measurement systems, numerical simulations of the
observatiou and retrieval process are being performed. A $oal nf
tbe_ simulations is to develo I) i)recJpitatiou Imraur'ter retrieval
|lgorithms optimized for tile chanuel, noise aud gain Imttct'n
characterist its of individual senso,_. I'xlstiug system, h(,i.g st u,t-
it'd include the DMSP Special Sen._-r Microwave/Imager (SShl/])
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and tile Special Sensor Microwave/Temperature Sounder (SSM/T-
2); prolm_d _nsors being investigated include the MI,MR and
the TIIMM TMI.

The simulation mflwsre, called the Passive Microwave Map-
ping and Retrieval Simulator (PMMRS), provides a flexible end-
to-end simulation of a mullisl_tctral passive microwave imagmg
and retrieval svsiem. ']'lie }'Xt_.lrS models three primary pro-
cesses: the fm:wsrd radiative transfer process, tile obser_'ation
proce_, and the precipitation retrieva/process. A_ shown in
Figure 1, the forward radiative transfer process converts micro-
physical cloud d_ta iuto upwelling brightness imagery, the ob-
servation I)roce._s transforms the upwelling bril_htnes_ i,nagerv
into the l)ri_htness temperature= recorded by the aillenoa sen*-
sor, while the retrieval process estimates atinospheric parame-
ters (e.g., raiu rate) mid compares them to parameters derived
from Ibe original microphysical cloud data. The PMMRS per-
miss evaluatln_ rat rievals for user._lected cond)ination* of sear, or
antenna Sl)eCilieatiolm, channel sets. noise levels, ol)_rvat k)n g,,-
ometry, aml precipitatiou cla.qses.

2. Forward Radiative Transfer Simul#.t JOt!

Mierophy._icsl cloud parameter data usod in this investiga-
tion is compo_ed primarily of 3.dimensional synthesized data
from the (;oddard Cuinulus Euseml)le ((:CE) .,¢imulalion of a
develol)iug convective storm system [1]. This data consists of a

set of five time samples of a trop!cal squall develol_'d from ini-
tial eolt(litious measnred during GATE. Vertical profiles of pres-
sure, temperature, relative humidity, liquid hydrometeor content
and froze, hydrometeor content are given for each pixel. ]ior-
i=ontal spatial resolution is 1.5 kin. Vertical remlutioq is tvpi.
cally I ks. Additional microphysical data based on a volume
scan of a convective multieell system made by the CP-2 weather

radar duriug the Cooperative [iuntsville Meieoroiogical Experi-
meut (COIlMEX, 1986) it used.

The micropbysical clm.I data were mapped into upwelling
hright m.s_ himgo_ [7'H) using t lie its.rat iv,, fl.ward radiative tra1,_-
far mcxlel developed by Gasiewski and Staelin ['2]. This is a
plsnar-s!ratified scattering-based calculation that u_s the sl)ec-
ified amfare reflectivity and atmospheric parameters (tempera-
ture, I)ressure, relative humidity, hydrometeor distributions, etc. )
at levels from the surface to ,,- 25 kin. Brightness temperature
imagery over a calm ocean was computed for the following mi-
crowave dJamlels: 6, 10.69, 18.7, 2.3.8. 36.5..50.3. 52.8.53.596.
54.4, 51.!11, 89, 118.75 d:(O.O, 0.12, 0.22, 0.37, 0.67, 1.27, 2.07_,.
186, 153.31 4"(0.0. 1.0, 3.0, 7.0), 220, 325,153 4"(0.0. 1.0.3.0. 7.0.
9.0), 3.10. m,l 410 (;llx. For example, Fig. 2a sbows the full-
rrsoluth)u I)rightn_, teltij)¢.rature imagery for l ilree of th,' six

MIKI!_ cham,els. The hinmdal structure _,_el, ill the imagery of
the 18,7 (;llz channel is caused bv cohl Oceanic reflectance {ml-
_i,h' the storlll, a warming cau_ed'l)y thin al)_orl)ing cloudx ,,ear



the periphery of the _torm, and a cooling d,e to ice scattering al
the center of the storm system.

_, Sensor Observation Simulalion

To simulate the ibsen'at|on process, four operations are per-
formed: (I) an antenna gain pattern is calculated, (2) the up-
welling brightness temper•tures are convolved with the antenna

gain, _3) the convolved imagery is sampled, and (4) pseudo-
random instrument noise is added. A Be•gel approxm:ation is
used in generating gab: patterns for circular paralmlic aperture
antennas. The gain pattern generator requires tie following user-
supplied p•rameten,: aperture diameter, illumination taper, fie-
quency° and number of sidelobes to include in the gain pattern:
The spatial response for each channel follows from the orbital
par•me:ors (e.g., satellite altitude). A two-dimenaio:!a! convoh:.
ties of the calcul•ted brightneu !megery and the spat:as response
yields the antenn• temperature ,maser)':

Y,(z.y) - |(=,v)..Ts(z.v)+.(=.y) (1)

which is a blurred version of the underlying brightness imager.y.
The computed antenna temperat,re image..fat e?cl_cha.nnel ,s
downnmpled according to ti:e instrument s h.:gn.esi el!ec.t,ve Sl)a:
tial remlution. Gnus|an pseudo-random noise :s added to each
pixel to simulate inslrun_-nt observation error. The noise stan-
dard deviation is determined for each channel I)_ed on the avail-

able bandwidth at thai frequency, integration inlerval, and ex-
_lX'cted s.s stem noise temperature.'Figure 2b shows tl_ree chan,els
Of the MIMR imagery co,:voh'ed with the sensitivity nailers st a
circular 1.6-m linearly-lapeled aperture at an orbital•lilt,de of
70S ks. The 89-Gliz cha,nel has a 3-dB spot size or ~ 1.g k,n.
tad ave•is moot of the storm structure. At G.Gllz, the spot size
is ,,, 211 ks, and nearly all storm structure is lost.

4. Karhunen-Lobve Anal}'sis

The ori|inal TB and the convoh'ed 7',, imagery is ,u,al.vz_t for
Is: in ola,etv•Uonal degrees of freedom nsing a Karhunen-l,n/'ve
(KI,} trand'ornmtion (•ha sailed principal component analysiJ).
The nnitary KL transform is used to rank.order the dominant
spectral mode, in the Tn and TA imagery by the mode signal-to-
noise ratio (SNfl) [3]. The modes are determined by the eigenvec-

tars of the spectral covariance matrix. The eigenvectors provide
• measure Of the contribution from each channel to the trans-
formed image. A,oriated with each eigenvector is an eigenvah,e
which in the variance hr the particularKl, mode. To account. Ior
obtervationnl noise variations s,m,g the channels, pr,.white.i,,g

the bri|htneu imagery prior to computatiou of the covariance
matrix :s performed.

The two most dominant KI, imag_ (i.e., thc_- with the two

larw'_l SNR's) for the six channel f,ll.resol,tion MIMi{ imaaer_ L

are •hewn in Fig. 3. The adjoining eigenvector plols reveal that

the moat dominant mode is essentially the sp.eclral dilrer.e.ce I.,'-
twt,_ the 23.8- and 89-(;11z channels. We n:terprel thm aa the
strong Katterinl signature front ice aloft. The second KL mode is
• cam'bin•lion d the scMtering signature from the high freq,,enry
ehann_s and the spectral difl'erence between the 6- and I0.O9-
GHI channels, and appears to be sensitive to the ra_liometricall,_;-
thin pedpherv of the storm. The KL-mode SNR s for the m,I.
m_lutkm in_ convoh'ed MIMR imagery (FIE. 4) can: be used to
detennlne the Isis in .umber of observable degreel of fr,eeclom
caused by the antenna pattern's brosdneu. If _ arl)!trar:.l.v.as.
sum that a KL mode contains useful inform•tan only It St nan
a SNR_2.0m3dB, the number of observable degree_ of fr.._lom
d_rnms from •pproximately three to two t:lmn co,vohitmn of
tim MIMR antenna pattern.

5. Precipitation Retrieval Simulation

This component of the PMMRS provides a,: environnlent [or
developing and optimising precipitation retrieval •lEar|tiros ,or
mull|spectral sub.lqyqtfist sampled microwave is•get'Y; To take
advantage of the spatial resolution avail•ble from nsgn-lrequency
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channels, multispectral deconvolution of the antenna gain pat tern
is first I)crformed. Two decouvohition n,od.les are being (level.
sped. Both n:ethods use information from the highest r_--,ohstion
(i.e.. ifigh_.sl freq,iei)ry) chan::els |o improve LJ,c.resol,tio,, ui"the

lower freq,e,,c.v channels. The first method uses the well-known
Linear Mi,lhnum Mean Squared Error (LMMSE) approach in the
spatial domain, such that:

_'s = 2_7', (2)

where TA is a vector consisting of all pixels from all channels
having any significant correlations with the brighlness st Ihe Is-
cat|o,0 of it::crest. Such correlations ca:: be due Is either rain cell
structure, spectral scattering or absorption structure, or antenna

pattern fihering. The determination matrix _ is given by:

= 7_TRT,4(_T,_TA "t" _.an)-' (3)

_,j is ti,e joi,t .qpat.iaJ-slx'ctral coy•fiance matrix between the
m, llispectral 2-dimensional signals i and j.

The second deconvolution method, developed by Ro_nkranz

14], uses a determination matrix _(u,t,) in the spatial Fourier
domain, and thus asaunws stationarity in the statistics of the

underlyi,g brighlness imagery. In this method _PB i_ found from:

:rl_s(,, .v)} = _(_, ,_)Y{'[,,(=, ,J)} (4)

wl:ere .T is tl:e 2-dimensional Fourier [rans[orm a.d n, t, are spa-

tin] ('leqnel,cies. The expression for _(,, _) can be found iq [4].

"lb obtain 7'_, the inverse Fourier transform is m_.d.

S,bsequent to deconvolution, rain rate retrieval algorithms
are t, I)e imldemented. Parameter estimation techniques under
ro.aid,.rali,., inch,Is I.MMSE algorithms, Wiener fih,-rh:g, and
non-lhluar sLalistical aud iterative eS!il,|ators, for optilllU,l: re-
tries•l•, the non-liuear relationship between brigl:tness temper-
at,urea and cloud and prt_ipltation par•melees most be consid-
ered. llere, a statistical i_rative retrieval techniq.e ba_d on
the piocPwise.linear relationshi I) Ix-|woen increnw, nlaJ changes i,I
bright:e•• temperature and incremental changes in surface pre-

cipitation rate (via the absorption and scattering coefficients) is
of interest. This technique is similar to the LI_IEISE technique

except that _ becomes an incremental predictor matrix. _, and

A_'_ a,,d AR (where AR is the incremental change in rain rate)

replace _'a and _'B, respectively, in "_ls. 2. 3, and 4. The sta-
tistical iterative lechniq,e has been proved useful in retrieving
relative h.,nidity profiles J:)].

At this time both the forward radiative transfer and the
sen*,:r observation COmlmnents of the i)M MRS have been iml)le-
n,ent,_l, hi addition, a study of the number of observable ,l,'gm_
of fr(_lon, for sensors s)'sten:_ with different antenna •pert ure di-
ameters and observation geometries has been performed., Some
res:,lts from this study are in Table 1. Although a_e cannot vet
quantify the available :el rieval accuracy of candidate svslems, ihe
Joss in nnmber of ob_.rvable degtee_ of freedom as size,:,re size
is reduced is readily Teen. Future implenwntation of the tiers,so-
lution and parameter retrieval components of the PMMIIS will
improve oar agility to deters|us (q,antitatively} the a_'ailable

ace,racy of existing and f,h,re spa('eborne passive microwave
meteorological systems •nd to design optinfig_l senso,-Sl_'cific
suit|spectral retrieval algorithms.
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Table I: Numbe

Sen,_or

C_cos)'ilCJil'Ot_OllS

MIMI_

of Ol_ervable De rees of Freedom

Aperture # # degrees

diameter (m) cha,nels of freedom
co !) 7

30 9 4

oo 6 3

!.6 6 2

Notes:

(!) A_uJnes circular linearly-tapered aperture field.
(2) D = oo implle_ full re_hltion imagery.

(3) Degrees of freedom ohservable only if SNR>2.0=3dII.
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_-A numericalsimulationof the satellite.basedmultispectralpassivemicrowave

prec|pitation mapping and retrieval problem is described. The purpose of this simulation is to

provide antenna and radiometer systems engineers with quantitative performance predictions

for proposed spaceborne passive microwave imaging sensors. The simulation contains six ma-

jor components: (1) microphysical cloud and ralncell data compilation, (2) forward radiative

transfer calcu]&tions, (3) sensor observation simulations, (4) Karhunen-Lo_ve transformation

and degree of freedom calculations, (5) antenna pattern deconvolutions, and (6) precipitation

parameter (e.g., rain rate) retrieval algorithm development. The simulations facilitate investiga-

tion of precipitation parameter retrieval using low-pass filtered brightness temperature imagery

from candidate passive microwave systems. The investigation also facilitates comparison of the

relative merits of proposed radiometric systems such as the EOS Multispectral Imaging Mi-

crowave R_tdiometer (MIMR) and geosynchronous satellite sensors. Initial simul_ttion results for

components # 1-4 are described herein, and procedures for deconvolution (component # 5) and

at statistical iterative approach to rain rate retrieval (component # 6) are outlined.
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I r Background

In satellite-basedpassiveremote sensing,both microwave and infraredfrequenciesare

used to observepropertiesof atmospherichydrometeors. An important featureof infraredim-

NpDry is the high spatial resolution avallaMe from instruments of moderate aperture size (< I m),

even at geosynchronous distances. Due to the large hydrometeor extinction at infrared wave-

lengths, such mmsors are unable to probe through most cloud cover. In contrut, mu]tifrequency

mlcrow&ve remote sensing provides a valuable complementary capability in being able to probe

throut, h clouds and even some precipitation while retaining use/u] sensitivity to hydromete-

ors [I, 2]. The dqF_ of sensitivity depends on the particular frequency of observation, the

l_,drometeor phmm (llqmid or ice) and the hydrometeor density and size distribution [3]. For ex-

ample, frequencles below ,- 6 GHz respond siKnificantly to only very strong precipitation, while

frequencies above _- 220 GHz respond to even light non-precipitating clouds such ms cirrus.

Compared to the infrared, the precipitation probing capability of microwave observa-

tions _'eat]y far.illtates the measurement of precipitation parameters such as surface rain rate.

Precipitation sensing capabilities have been demonstrated by a number of airborne and space-

borne microwave instruments, for example, the Advanced Microwave Precipitation Radiometer

(AMPR) [4], the Millimeter-wave Temperature Sounder (MTS) [5], the Nimbus-E Microwave

Spectrometer (NEMS) [8], the Scanning Multichanne] Microwave Radiometer (SMMR) [7], and

the DMSP Spt_al Senior Microwave/Imager (SSM/I) [8]. Measurements of surface precipita-

tion rate facilitate hydrological studies involving water budget and runoff analyses.in addition,

the relative simplicity of the forward radiative transfer relationship at microwave frequencies

along with the wide available ra_p of cloud penetration depths suQest that profiling of some

precipitation paxmmeters (e.g. rain rate and hydrometeor density, size, and phase) might be pos-

sib]e [9]. Measurements of water density profiles in precipitating systems would be paxticu]ax]y

umd'ul for severe storm tracking and estimating atmospheric heating profiles, which axe in turn

important in understamding _obai heat transport [I0].

For applications in hydrology, severe storm tracking, operational meteorology and globM

chuge study, area-averaged estimates of the forementioned precipitation paxameters with spatial

resolutions of ~ 1 - 5 km rand observed at time intervals of _ 30- 60 rain are generally considered

to be ultimately desirable [11, 12]. Further improvements in spatial or temporal resolution would

yield only small marginal benefits. Degradations in spatial resolution to ~ 25- 50 km would still

' yield useful data for some of the above applications, although the utility faJ]s off quickly beyond

this range. However, the accuracy of area-averaged estimates depends strongly on the spatial

resolution, radiometric sensitivity and channel set of the observation system. Indeed, the forward

transfer relationship is decidedly non-linear with respect to most hydrometeors parameters,

especially at frequencies above -., 23 GHz. In addition, there is often no unambiguous inverse

relationship, particularly if observations are made over only a narrow range of frequencies. These
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two effects, combined with (1) low-pass spatial sampling caused by large antenna footprints

relative to the spatial scales of precipitation, (2) radiometric instrument noise, and (3) antenna

calibration and gain pattern uncertainty compromise the accur_ies obtainable from passive

microwave imagery. Since the costs for overcoming the technological impediments causing these

problems are quite high, it is of great importance to be able to predict the performance of

candidate spaceborne sensor systems prior to implementation for cost/benefit tradeoff purposes.

During the last decade, several new geosynchronous (GEO) and low-Earth orhitting

(LEO) passive microwave precipitation sensors with enhanced spatial resolution capabilities

have been either studied, proposed or recently deployed:

1. Microwave Atmospheric Sounding Radiometer (MASR) GEO system: ,_ 4.4 aperture [13]

2. Geosynchronous Microwave Precipitation Radiometer (GMPR): ~ 4 aperture [14]

3. LaRC Large Space Antenna (LSA): ~ 15 - 40 meter GEO imaging sensor [12]

4. DMSP Special Sensor Microwave/Temperature Sounder (SSM/T-2)

5. Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) [15]

6. Multispectral Imaging Microwave Radiometer (MIMR): -,, 1.6-m LEO system for deploy-

ment during EOS-B [16]
7. Jet Propulsion Laboratory Synthetic Aperture Imaging Radiometer (SAIR) [17]

This list is not exhaustive, but simply representative. For the first three (GEO) systems, the

most important advantage stems from the high temporal resolution available from the geosyn-

chronous va_ttage point, although large apertures and/or high frequency channels are required to

obtain reuomtble spatial resolution. For the other systems, the low Earth orbitting configura-

tion considerably simplifies the structural problems (and expenses) associated with large space

antennas. However, the advantage of high temporal resolution is lost due to long revisit times.

It can only be regained by implementing a small fleet of LEO sensors.

To assess the relative merits of the above listed and other candidate passive microwave

sensor systems for precipitation measurement, numerical simulations of the multispectral imag-

ing and retrieval processes as applied to sp_eborne passive microwave precipitation measure-

ment systems rare being performed. The simulations are being based on realistic three-dimensional

geophysical models, a_curate sensor models, and optimal precipitation parameter retrieval algo-

rithms. This paper discusses recent progress and the current state of the numerical simulations.

A goal of these simulations is to develop precipitation parameter retrieval algorithms optimized

for the channel set, noise and gain pattern characteristics, and observation geometry of a par-

ticular sensor.

The overall scope of the simulations includes all of the proposed sensors listed above,

although the immediate application is being directed to three specific systems: (1) EOS MIMR

(#8), using six channels at 6, 10.69, 18.7, 23.8, 36.5 and 89 GHz from low Earth orbit (705 km

altitude), (2) LaRC LSA (#3), using nine window channels at 6, 10.69, 18.7, 36.5, 89, 166,
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220,340 and 410 GHz from geosynchronousorbit,and (3)LaRC LSA (#3), usingtwo window

channels at 18.7and 36.5,one water vapor channel at 23.8GHz, and fiveoxygen channels at

50.3,52.8,53.596,54.400and 54.940GHz (a totalofeightchannels)from geosynchronousorbit.

Although we have targetedprecipitationas the geophysicalprocessof greatestinterest,

theretrievalofseveralothergeophysicalprocessesmight be considered.For example, spaceborne

measur_nents oftemperature and water vapor profilesare alsoviableusing passivemicrowave

systems. However, the spatialand/or temporal resolutionneeds formeasurement of thesevari-

ables are not as demanding as for precipitationor cloud water. When compared with water

vapor or temperature,precipitationparameter retrievalsareof greaterconcern fortwo primary

reasons:(1)the relationshipsbetween the parameters and the observablesare highlynonlinear

and even bimodal,and (2)convectiveprecipitationcellsand otherstorm features(e.g.,hurricane

eyewalls)can be as small as a few kilometersin size,and typicallya factoroffivesmallerthan

the spatialscaleof most temperatureor water vapor structure.Thus, ifpracticalprecipitation

measurement systems can be identified,lemperatureand water vapor measurements using the

same systems willnot requiresignificantlymore sophisticatedhardware or retrievalalgorithms.

The same can be said for sea ice detection. Here, spatial resolutions smaller than one

kilometer are desirable, but the detection mechanism is relatively straightforward compared to

precipitation retrieval algorithms and the time evolution of ice movement is relatively slow.

Essentially, the problem requires a set of channels that exhibit a sensitivity difference to ocean

water and sea ice, but can still probe through the atmosphere. This must be done at least

once a day (or so). Here, high frequency window channels (e.g., at 37, 90, 166 and 220 GHz,

including both vertical and horizontal polarizations) can be used since sea ice occurs only in

cold latitudes where water vapor screening is small and high cloud opacity is not persistent.

The necessary spatial resolution is obtainab]e by virtue of the narrow antenna beams available

at these t:requencies using apertures of practical size. In contrast, precipitation measurements

am best performed using low frequency channels (e.g., 6, 10, 18 and 37 GHz) for which sub-

Nyquist regflutlon is the overriding technological impediment (and hence, the overriding cost

iuue). Moreover, a geosynchronous system is not practical for sea ice observation due to the

large incidence angle near the polu regions.

Soil moisture can evolve quickly, particularly during precipitation events. For hydro-

logical purposes, spatial scales of several kilometers axe ultimately desirable. However, since

the soil moisture retrieval problem is predominantly linear [19], sub-Nyquist spatial resolution

should cause no significant degradation in the resulting area-averaged soil moisture retrieval er-

ror. Moreover, since frequencies for soil moisture measurement are relatively low (near L-band),

spaceborne systems with adequate spatial resolution will likely be designed as single-channel

thinned-aperture interferometers [18]. Again, the spatial resolution problem as applied to mul-

tichannel precipitation sensing is of greater immediate interest.
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In contrastto water vapor,temperature,seaiceand soilmoisture,the radiativetransfer
i

through precipitationresultsin strongnonlinearitiesbetween the underlying hydrometeor pa-

rameters (e.g.,water density,phase and particlesizedistribution)and the upwellingbrightness

temperatures. For sub-Nyquist systems,these nonlinearitiescan cause ambiguitiesin area-

averaged retrievalsof precipitationparameters. For example, using 37-GHz data from Wil-

heir elal. [20],a 50-mm/hr raincelloccupying 10 percentof the area of a sensor'sfootprint

causesapproximately the same brightnessas a 1-mm/hr drizzleoccurringover the entirearea

of the footprint,even though the area-averagedrainratesdifferby a factoroffive.

It is for the above reasons that we have focussed our simulation efforts on precipitation

parameter measurements, with particular emphasis on maritime precipitation. As a practical

matter, maritime precipitation is observable only from space, and moreover occurs over a larger

portion of the Earth's surface than continental precipitation. In addition, continental precipi-

tation is more readily amenable to ground-based radar observation, and is currently observed

over a significant fraction of the industrialized northern hemisphere. Thus, we have given initial

emphasis to simulations over ocean backgrounds. We have also emphasized geosynchronous sys-

tems. Precipitation events (particularly the convective type) evolve swiftly, with typical lifetimes

of one to three hours. Thus, it is of particular interest to simulate precipitation measurements

from geosynchronous orbit where short revisit times (less than one hour) can be achieved [21].

The simulationsoftware,calledthe PassiveMicrowave Mapping and RetrievalSimula-

tor (PMMRS), providesa flexibleend-to-endsimulationof a multispectralpassivemicrowave

imaging and retrievalsystem. The PMMRS models threeprimary processes:the forward ra-

diativetransferprocess,the observationprocess,and the precipitationretrievalprocess. As

shown in Figure I,the forward radiativetransferprocesstransformsthree-dimensionalmicro-

physicalcloud data intoupwellingbrightnessimagery,the observationprocesstransformsthe

upwellingbrightnessimagery intothe brightnesstemperaturesrecorded by the antenna sensor,

whilethe retrievalprocessestimatesatmosphericparameters(e.g.,rainrate)and compares them

to parameters derivedfrom the originalmicrophysicalcloud data. The PMMRS permits eval-

uating retrievalsfor user-selectedcombinationsof sensorantenna specifications,channel sets,

noiselevels,observationgeometry,and precipitationtypes.The overallgoalof thesemapping

simulationsisto quantitativelyassessthe effectsofmultispectralblurringon area-averageder-

rorsin retrievedprecipitationparameters such as surfacerainrateand liquidand icedensity

profiles.In studying the resolutionproblem, the authorsrecognizethatsome severemechanical

and electricalrequirementsmight be imposed in the implementation of the candidateimaging

systems. However, the primary purpose ofthisstudy isto definethe imaging needs based on the

geophysicalphenomena ofinterest,and tosecondarilyconsiderthe (albeitformidable)hardware

issues.
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2. Forward Radiative Transfer Simulation

Microphysical ralncell parameter data used to date is composed primarily of tL_-

dimensional synthesized data from the Goddard Cumulus Ensemble (GCE) simulation _ a

developing convective storm system [22]. This data consists of a set of five time samples _ a

tropical squall computed using a numerical cloud evolution model from initial conditions _-

sured during the Global Atmospheric Research Program Tropical Atlantic Experiment (GATI_.

Vertical profiles of pressure, temperature, relative humidity, liquid hydrometeor content

frozen hydrometeor content are given for each of 64 × 64 pixels. The horizontal spatial r_.

olution is 1.5 kin. The vertical resolution varies, but is typically 1 kin, with twenty discr_

levels.

Additional ra.incell microphysical has been obtained from a volume scan of a convective

multicell system made using the CP-2 weather radar during the Cooperative Huntsville Meteo-

rological Experiment (COHMEX, 1986) [23]. The reflectivities were converted to hydrometeor

densities and mean size parameters using the Marshall-Palmer (MP) and Sekhon-Srivastava (SS)

size relationships. Particle phase was assumed to be liquid below the freezing level, solid above

the temperature of ice nucleation (assumed to be -30 ° C ), and linearly mixed in between. A

6.S dB ice reflectivity correction was applied [24].

The microphysical raincell data was mapped into upwelling brightness images (TB) using

the iterative forward radiative transfer model developed by Gasiewski and Staelin [25]. This

is & planar-stratified scattering-based model that uses the specified surface reflectivity and at-

mospheric parameters (temperature, pressure, relative humidity and hydrometeor densities, size

distributions and phases) at levels from the surface to ~ 20 km altitude. Brightness tempera-

ture imagery over a calm ocean was computed for the following microwave frequencies: 6, 10.69,

18.7, 23.8, 36.,5, 50.3, 52.8, 53.596, 54.4, 54.94, 89, 118.75+(0.12, 0.22, 0.37, 0.67, 1.27, 2.07),

166, 183.31+(0.0, 1.0, 3.0, 7.0), 220, 325.153+(0.0, 1.0, 3.0, 7.0, 9.0), 340, and 410 GHz. These

frsquen¢i_., include all significant microwave "window-channels" along with those channels near

the water v_por and oxygen absorption lines that are deemed to be the most essential for tro-

pospheric measurement purposes. For the absorption line channels, the offset frequencies from

the respective line centers are listed in parentheses. The resulting sets of brightness maps are

catalogued in Table 1.

Typical full-resolution brightness imagery for the microwave window channels is shown

in Figs. 2a-d. These figures include a representative set of three GCE time samples and the

single COHMEX sample. Here, whiter areas correspond to warmer brightnesses. In all imagery,

the warming caused by precipitation over the reflective ocean surface is readily seen in many of

the channels below ,,, 23 GHz. This is expected since precipitation is predominantly absorptive

at these low frequencies. Thus, emission from the relatively warm hydrometeors increases the
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upwelling brightness above the cold values characteristic of clear-air regions over ocean surfaces.

In contrast, scattering of the cold cosmic background raztiation by ice over the storm cores

is apparent in all higher-frequency window channels (,_ 18 GHz and above). The bimodal

brightness structure clearly seen in the imagery of the 18.7- and 36.5.GHz channel is caused by

cold oceanic reflectance outside of the storm, a warming caused by thin absorbing clouds near

the periphery of the storm, and a cooling due to ice scattering at the center of the storm.

Corresponding full-resolution imagery for the oxygen and water vapor channels for GCE 3

is shown in Figs. 3 and 4. As expected, the storm structure is least visible in the most opaque of

these channels, that is, those channels with greatest integrated opacity. In the case of the oxygen

channels, the altitude of the ralnceU top can be estimated by virtue of the multiplicity of channel

probing depths obtainable using a series of channels with successively increasing opacities [23].

These high-resolution brightness maps and others for similar precipitation cases are used as the

basis for all ensuing statistical calculations and imaging and retrieval studies.
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3. Sensor Observation Simulation

Candidate sensors are modelled by aperture size, aperture illumination field distribution,

orbital Lltitude h, and field-of-view (FOV). In addition, each sensor channel n = 1...N is mod-

eled by the following characteristics: center frequency f., bandwidth W,,, and double-sideband

receiver noise temperature Trec.,. A diffraction-limited aperture is assumed for all channels,

thus giving rise to spot resolutions that increase with channel center frequency. Collectively,

these parameters determine the single-spot brightness sensitivity of each channel:

oss. = (I)
_wn T

where Tsys,_ = Trec,+ Tantn is the system noise temperature (receiver plus antenna), and r is

the integration (or dwell) time for a single sample. For Earth observation, typical antenna tem-

peratures Tant, , _re between 100 and 300 K, depending on the center frequency and geophysical

state.

For GEO systems, 1- is derived from the image FOV, orbital altitude, and the total scene

acquisition time T,, assuming uniform rectilinear sampling of the subsatellite (equatorial) scene

at intervals determined by the Nyquist sampling criterion for the highest frequency channel

(Fig. 5a). Denoting this sampling angle by 0s (in radians), we have:

[hOs]2
ro,o = 7', rl. (2)

where h = 3.5885 x 104 km and the FOV is in km 2. The parameter r/, is the scan efficiency,

which is the fraction of time spent acquiring radiometric scene data as opposed to performing

supporting operations such as calibration and scan turnaround. For the GEO simulation studies,

the FOV, tots] acquisition time and scan efficiency are taken to be 1,000 km ×1,000 kin,

T, = 30 minutes and 85%, respectively.

For LEO systems, 1" is derived from the angular swath width Ow and altitude h, assuming

s cross-track raster scan with the subsateUite raster spacing determined by Nyquist criterion for

the highest frequency channel (Fig. 5b):

O_vh / h + 6356.8
rico = "_w V3-9-_ 1-_ 17. (3)

where 05, 0w I1_ in radians and h is in kin. For purposes of antenna characterization, we use

a cross.track scanning geometry of angular width 90°, T/. =45% and h = 705 km for the MIMR

ldmulations. ] We also assume that scene mapping takes place using single (non-redundant)

ZWhiie in view of the |&ct that MIMR is a conic.]scanning instrument, an intracompazison of antenna char-

• cteristies can be most euily accomplished using the chosen ruter scan geometry. ConicaJ scans would produce

similar sensitivities &nd resolutions, hence a meaningful comparison can be made.
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receivers for each channel. If redundant receivers are used to provide parallel scene mapping,

the effective integration time can be increased by the number of redundant receivers Nrec. This

reduces each os$,_ value by 1/_rec. 2

To simulate the observation process, four operations are performed: (1) an antenna gain

pattern (or, spot pattern) is calculated, (2) the upwelling brightness temperatures are convolved

with the corresponding spot pattern, (3) the convolved imagery is sampled at the Nyquist rate,

and (4) pseudo-random instrument noise is added. Discretized spot patterns are generated from

the antenna gain pattern sampled at appropriate locations on the Earth's surface. Gain patterns

are based on the specific aperture field distribution and wavelength. Without significant loss of

generality, apertures are assumed to be circular of diameter D, and have a linearly polarized

aperture field with uniform phase taper and radial amplitude taper:

_(r, O) = Eo _ t - (4)

Here, p is a parameter that describes the degree of illumination taper. The resulting family of

gain patterns are described by Bessel functions [26]:

where go is a constant, and c is the speed of light. By sampling the continuous gain function,

the diagonal elements of the gain matrix _ are obtained:

g_(p;0o) 0
0 g2(p;O,j)

_ = ".. (6)

gN(P; oo)

where AR is the horizontal spatial resolution of the brightness maps (see Table 1).

Since the Fourier transform of the antenna gain is related to the aperture electric field

correlation function [27], the Nyquist sampling interval caa be determined from the aperture

size. This follows from the fact that the aperture field correlation function is zero for spatial

disp]gcements greater than D. Accordingly, if no aliasing is to occur, the maximum angular

sampling interval 05 must be:
c

Os = (8)
2DfN

_Rednndant receivers may be the only practicLl means of meeting the slew requirements for some l_rge filled-
aperture systems, for example, the MIMR 4.4-m system.
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The corresponding spatial sampling interval is:

ch
Rs = hOs = (9)

2fND

Tkis isthe Nyquist sampling interval.Itmust be distinguishedfrom the the 3-dB spot size(or,

"3-dB resolution")ofthe highestfrequencychannel,even though the 3-dB measure iscommonly

referredto in discussingsystem resolution.Depending on the apertureilluminationtaper,Rs

isfrom two to nearlyfourtimessmallerthan the 3-dB spotsizeat the highestfrequency,which

follows: ch

R3dB, N = hO_B,N = o(p) f--_ = 2o(p)Rs (I0)

where the constant o (Table 2) is a weak function of p, ranging between approximately one to

two ([26], pp.195). Note that sampling at RN does not guarantee that all spatial frequencies in

the underlying brightness imagery are measured.

The discretized spot pattern is subsequently truncated so that the convolution in Eq. 14

is over a finite range of indices. To determine the indices at which the pattern is truncated, the

beam efficiency functions r/B(p; 0) are used. These functions are the fraction of beam energy in

the conical solid angle from the beam axis out to a given angle 0 (Fig. 6):

The curves show that 3-dB beam effcienciesgreaterthan ~ 55% cannot be obtained using

simpleaperturetapers.Note thatthe illuminationtaperp affectsthe main beam efffciency(or,

null.to-nullefficiency)considerably,particularlyforweak tapers(p= 0 or I).Specifically,main

beam effcienciesgreaterthan ~ 86% cannot be achievedwith a uniform taper (p "- 0), but

requirea more gradual taper (p > I). However, increasingp alsoincreasesthe 3-dB spot size

by virtueof the factoro in Eq. 9. The apertureefficiency:

hA(P) = 2p + I
(p+I)2 (12)

is a measure of the effective use of aperture area in increasing main beam gain, and is also

reduced (Table 2) as p increases.

Using Eq. 11, we find that truncation near the third null for the lowest frequency channel

insur_ that virtually all (> 90.8%) of the beam energy is accounted for in the discretized spot

patterns for all channels and for all tapers p > 1. An minor exception occurs for the uniform

taper (p = 0) for which only 96% of the beam energy is contained within the third null for

22



the lowest frequency channel. To account for both (I) radiation from far sidelobes and (2) the

undetermined constant go the truncated gain matrix is subsequently normalized so that:

i=;g _=jg

i=-ig 3"-jg

where _ij is zero for ]i] > ig and lJ[ > 3g, and 7 is the identity matrix. This insures that the

spatial response is unitary over the (2ig + 1) (2jg + 1 ) gain values.

To simulate the observation process, discretized gain patterns are subsequently convolved

with the brightness temperature imagery then corrupted by additive white noise. Mathemati-

OG

caUy:

(14)

= _e-i,f-j) =
4, 0 1

0 a_2 6_6_
°.,

observation noise with covariance matrix:

(15)

where t is the transpose operator and 6 is the Kronecker delta function. In Eq. 14, _ denotes

two-dimensions] convolution. In performing the convolution, the brightness images are padded

with clear-air spectra at locations outside the range of available data, effectively extending the

imgges beyond imLxJmax pixels. Note that since the map resolution _R is smaller than the

resolution of the sensor's sampling grid Rs, the map noise standard deviation oTn must be

adjusted relative to the single-spot standard deviation oss,_ by the relative sampling rates:

R$
_r_ = OSSn'A" _ (I6)

For the LSA eight-channel system, the map resolution AR is considerably smaller than the

Nyquist sampling interval, although AR is comparable to R$ for the MIMR and LSA nine-

channel systems. Overall, the above simulation of the observation process is equivalent to

sampling the raster at a resolution Rs, then resampling to a standard resolution AR. For the

MIMR and LSA systems, the assumed system sensitivity parameters, resolutions and associated

integration times and single-spot sensitivities are listed in Tables 3 and 4.
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where: _si.i is the multispectral scene brightness at pixel i,3 (i ffi I...imax,j = I...jmax),

_AO is the asmciated multispectral antenna temperature at pixel i,j, _0 is the sensor's mul-

tlspectral discretized spot pattern (or, gain) matrix, and Uij is white Gaussian pseudo-random



Figs. ?a-cshowthe MIMK six-channel imagery before and after convolution with the

sensitivity patterns of circular 4.4-m and 1.6-m quadratically-tapered (p - 1) aperture distri-

butions at a 705-km orbital altitude. Here, Rs = 0.27 and 0.74 km (respectively) while the

3-dB resolutions are R3d B ,N = 0.68 and 1.89 kin. For illustration, the 210-minute GCE frame

(GCE 4) has been chosen, and instrument noise has not been added. In practice, the convolved

antenna temperature imagery would actually be downsampled at the Nyquist resolution of the

highest frequency (89-GHz) channel. To obviate the need for subsequent upsampling to the

resolution _R of the unconvolved brightness maps, we show the antenna temperature imagery

at this same resolution.

With a 4.4-m aperture, the fine storm structure observed in the full resolution imagery is

revealed at frequencies as low as 10.69 GHz, and the 6-GHz channel shows some of the overall

shape characteristics. However, with the 1.6-m aperture (the size proposed for MIMR during

EOS-B [16]), the fine storm structure is visible only at frequencies equal to or higher than

18.7 GHz. At 6-GHz, the spot size for the 1.6-m aperture is _ 28 km, and even the gross shape

seen in the full resolution imagery is lost. In both convolved cases the 89-GHz channel has a

small enough 3-dB spot size (,_ 0.7 and 1.9 km for the 4.4- and 1.6-m apertures, respectively)

to reveal virtually all of the features seen in the full resolution imagery.

Figs. 8a-c show the nine-channel GEO LSA imagery for GCE 4 both before and after con-

volution with the sensitivity patterns associated with circular 40-m and 15-m diameter apertures

with quadratically-tapered (p = 1) field distributions. Even with the 40-m aperture, much of the

fine storm structure is lost in the process of imaging. However, some of the bimodal brightness

structure near the storm edge remains observable at 36.5 GHz. With a 15-m aperture, very little

bimodal structure remains at even 36.5 GHz. Although the blurring at frequencies of 166 GHz

and higher is small for both 15- and 40-m apertures (spot sizes are less than ,,, 6 km), there is

considerably less information on fine storm structure at these frequencies. Similarly, Figs. 9a-c

show the eif0st-channel (low-frequency) GEO LSA imagery for GCE 4 both before and after con-

volution with the sensitivity patterns associated with circular 40-m and 15-m diameter apertures

with quadratically-tapered (p -- 1) field distributions. Again, much of the fine storm structure

is lost even in the highest frequency (5-mm band) channels.

To reduce the complexity of the overall simulation, some potentially interesting aspects of

the observation portion are tacitly avoided here. For instance, the polarization properties of the

sensor and the upwelling brightness field are not considered. Also not considered are the effects

of spot elongation or radiative transfer effects caused by different slant-path distances through

the atmosphere and/or surface emisivity changes at off-nadir angles, as would be encountered

at the extreme spots of LEO and wide-FOV GEO systems. These features are not considered

to be important in the initial analysis of the expected performance of spatial resolution limited

sensors. We note, however, that gain patterns for radiometric interferometers (or Synthetic
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Aperture InterferometricRadiometers,SAIR's [28])can be analyzed with the same formalism

and software as presented here for filled-apertureimaging radiometers. For the SAIR, the

sensitivitypatternofthe array would be substitutedforthe aperturegain pattern.Two minor

differencess.re(I)theSAIR g_infunctionisnot positivedefinite,and (2)theinfluenceofgrating

lobescannot be neglected,especiallyin thinned-apertureSAIR arrays,a

Upon integrationintothe multispectraldeconvolutionexperimentsand precipitationre-

trievalsimulations,some issuesthat willbe ableto be quantitativelyresolvedusing the above

formLlismincludethe tradeoffbetween beam efficiencyand spotsize,the effectsof antenna gain

pLtternuncertaintiesand the effectsof 3-dB rastersampling as opposed to Nyquist sampling.

indue to the structurLl complexities of i_lled-aperture sensozs, SAIR's may be the only practical method of

implementing particularly large apertures.
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4. Karhunen-Lo_ve Analysis

The convolved _A imagery has been analyzed for loss in observational degrees of freedom

uling the Km'hunen-Lobve (KL) transformation (also called principal components analysis, or

the method of empirical orthogonal eigenfunctions). The unitary KL transform rank-orders the

dominant spectral modes in the TA imagery by the modes' signal-to-noise ratios (SNR's) [29, 30].

The SNR's of the _s KL spectral modes are then compared to those of the T_ KL modes to

determine the number of observational degrees of freedom in the observed imagery relative to

the number of degrees in the full resolution imagery.

The KL transform is determined by the eigenvectors of the spectral covariance matrix

_TA:rs. One way to estimate this matrix is to assume ergodicity, that is, that spatial averaging

over the pixels of an image yields statistics identical to those obtained by ensemble averaging

over pixels chosen from a large set of independent images. Strictly, this is only true for two-

dimensionally ergodic random processes• In the simulated TB and TA imagery, this condition

is not quite satisfied. However, the lack of a large ensemble of independent images requires this

practice; the consequences of its effects will be discussed later in this section.

Assuming spatial ergodicity, the spectral covariance for TA becomes:

 r,z. = ((TA - (TA))(7'A - TA))')

_j=l (_A,j (17)
imaxjmax- I

where the outer expectation operator (.) is computed by space-averaging over the ensemble of

all ima.xjmax pixels in the image and we have arbitrarily defined _1 to be the expected value

of TS in the absence of hydrometeors. The eigenvectorsand associatedeigenvaluesof _TATA

mm found by diagonalization:

AN

(18)

where the rows of the KL transformation matrix _ are the eigenvectors of _rATs. These

eigenvectors provide a measure of the contribution from each channel of the brightness imagery

to each KL image:

An important property of the KL imagery is that all KL channels are uncorrelated in the

sense of Eq. 17. Note this does not imply that they are statistically independent. Rather,
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they are independent only in their second order statistics. Indeed, the KL transform (as based

on Eq. 17) produces complete statistical independence only in the case where _A is a jointly

Gaussian random process. Since _A does not satisfy this condition, the joint moments of _ for

orders higher than two are generally nonzero.

For each KL channel,the associatedeigenvalueA, isitstotalexpected energy.To deter-

mine the fractionofthisenergycontaininggeophysicalinformation(versusnoise),theeigenvalue

must be compared with the observationalnoiseenergy in the channel. Provided that the sen-

sitivitiesa:rnare identicalover allsensorchannels,thissame noiseenergy willappear in each

KL channel. This isa consequenceofthe unitaryproperty of the transform matrix _. In this

cMe, the signal-to-noiseratio(SNR) foreach KL channelis:

A, - a_.,
(20)

SNR, = a_..

In practice,some sensorchannelswillbe more sensitivethan others,thus the #Tn's will

be different.To accommodate observationalnoiselevelvariationsamong sensorchannels,itis

necessaryto prewhiten the brightnessimagery priorto computation of the covariancematrix:

o
o z/av ;

I/ v 7 0
0

.=.

1/ v W o
o

+

where _xt'j is the noise-whitened antenna temperature imagery.

_A ij (21)

(22)

The purpose of this step is

to force the noise component of the signal _A to be white. Since _ is unitary this noise

remains white under the KL transformation. That is, the noise energy in _A is uncorrelated

and distributedequallyamong allKL channels.This would not followifthe noisecomponent

in 7_'Aijwas colored. Prewhitening by Eq. 22 alsoscalesthe transformedobservationalnoise

energiesin nilKL channelsto unity.Thus, the KL-channel SNR's are:

SNR. -- A,, - ] (23)

where the An'sare the eigenvaluesof_:r_T_. Effectively,prewhiteningallowscomparison ofthe

informationcontainedin the brightnesschannelson a "channel-noiseequivalent"basis.
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By rank orderingthe SNR's of the KL channels the relativeimportance of each combi-

nation of sensorchannels (alsoreferredto as a "KL mode" or "KL image') can be assessed.

For example, forthe full-resolutionsix-channelMIMR imagery,the most dominant KL image

(i.e.,with the largestSNR, 28.40 dB) shows the overallshape of the GCE 4 cellextremely

well(Fig.10a, leftmostimage). The second and thirdmodes (next two from left,18.60 and

4.80 dB, respectively)respond primarilyto the bimodal brightnesssignaturenear the paxtially

transparentedges of the cell.The other threemodes are primarilynoise(rightmostimages),

as suggested by the theirlow SNR's. The adjoiningeigenvectorplots(Fig.11a) revealthat

the most domina.ntmode isessentiallythe spectraldifferencebetween the 23.8-and 89-GHz

cha,'_nels.We interpretthismode as responding to the strongly-vaxyingscatteringsignature

c4tusedby icealoft.The second KL mode isa combinationof the scatteringsignaturefrom the

high frequencychannelsand the spectraldifferencebetween the6- and 10.69-GHz channels,and

appears to be sensitiveto the radiometrically-thinperipheryofthe storm. The othermodes are

successivelymore di_cult to interpret.Indeed,thereisno guaranteethat any KL mode has a

mem_in_ul geophysicalinterpretation.

The KL-mode SNR's forthe full-resolution(_B) and convolved(_A) brightnessimagery

can be used to estimatethe lossinnumber ofobservabledegreesoffreedom caused by the broad-

hessofthe antenna pattern.As seenin Figs.10b and c,the KL modes forthe convolved MIMR

imagery exhibitmonotonicallydecreasingSNR's, indicativeofa progressivelossof spectralvari-

ance c_used by the spatialfilteringofthe antenna. A comparison ofthe SNR's (Figs.10 and 12)

forthisimagery shows a reductionof ,,,1.6dB in the thirdmode from the fullresolutionto the

4.4-m case,then additionalreductionsof ,,,1.3dB and ,,,1.5dB in the second and thirdmodes

(respectively)from the 4.4-m caseto the 1.6-m case. These reductionsare attributedto the

relativelylargedependence ofmodes 2 and 3 on the lowerfrequencychannelsforwhich spatial

resolutionis adversely_l'ectedby aperture sizereductions.In contra_t,the dominant mode

SNR's show insignificantreductionswith aperturesize,reflectingthe factthatthe dominant KL

mode depends mostly on the high frequencychannelsforwhich spatialresolutionisbetter.

Further insightinto the effectsof varying spatialresolutioncan be seen by examining

* the eigenvectorsin Fig.11&-c.Foremost,thereisrelativelylittledifferencein the eigenvectors

for a given mode as the resolutionis changed. This suggeststhat no gross changes in the

spectralcharacteristicsof the brightnessimagery occur over the range of spatialresolutions

being considered. However, some changes in the relativecontributionsfrom the six MIMR

channelscan be seen.In mode 1,the contributionfrom the 6-and 10.69-GHz channelsdecreases

by a factorof _,2 from full-resolutionto the 1.6-m case,thus indicatinga reductionin signal

v_iance in the low-frequencychannels. However, the high frequencychannels remain strong

contributors,indicatingthatspatialresolutionisgood forallcases.In mode 2,the contribution

from the low-frequencychannelsisrelativelysmMl, and changes signfrom the fullresolutionto
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the 1.6-m case. This suggests that the contribution to the bimodal structure of KL mode 2 from

the lowest frequency channel is reduced by spatial filtering. In mode 3, the contribution from

the low frequency channels decreases markedly from full resolution to 1.6-m resolution, again

indicating a decreasing variance.

However, caution must be exercised in interpreting the KL mode SNIVs in an absolute

sense. The first (and most obvious) reason is that the SNR's have been derived from only a

single time frame (GCE 4) of a computer-generated brightness field. Ideally, a large ensemble

of real images would be used. A more subtle reason arises from the non-ergodicity of the

precipitation cell brightness temperatures. Since each cell is finite in extent, an essential question

arises as to what fraction of the image area should be padded with noisy clear-air brightness

temperatures. The larger this padding, the smaller the resulting eigenvalues ,k,,. Thus, the

eigenvalues (and hence the SNR's) depend on the size of the cell in relation to the size of the

image. To quantify this relation, let the number of pixels used in the space-averaging process

of Eq. 17 be Np = imaxJmax, and the resulting eigenvalues and SNR's be A,x and SNR_,

respectively. Then padding the image with additional noisy, clear-air pixels will yield a larger
t "I "I l

image with N_ = ZmaxJma x pixels, where N_ > Np. The eigenvalues of the padded imagery

will be correspondingly smaller, as determined by the number of additional pixels:

Then from Eq. 23, it follows that:

- 4. + N;- N,N;

or, in decibels:

(24)

(25)

SNR_ (dB)= SNR.(dB)+ 10 loglo (N._) (26)

Thus, the KL mode SNR's for precipitation cell imagery are meaningful only to within an

arbitrary lulditive constant which depends on the size of the clear-air portion outside the ceil.

However, for identically sized images, the SNR's can be meaninKfully intercompared. Visual

inspection of the KL imagery can also provide a meaningful qualitative determination of the

usefulness of a mode.

For the nine-channel GEO LSA system there are nine KL modes, of which perhaps 4-6

provide significant information (Figs. 13a-c). Again, the KL modes for the convolved imagery

exhibit monotonically decreasing SNR's, indicating a progressive loss of spectral variance as the

aperture size decreases. A comparison of the SNR's (Fig. 15) shows a reduction of ,,, 2 dB in

the dominant mode SNR from the full resolution to either the 15-m or 40-m cases, and much

larger reductions (_, I0 dB or more) for the second and higher order modes.

29



Again, the eigenvectors for a given mode (Figs. 14a-c) exhibit no gross changes as the

spatial resolution is varied. As in the MIMR case, mode 1 consists primarily of the difference

between the high frequency channels (which cool in response to scattering by ice aloft) and

the low frequency channels (which warm in response to rain and cloud water). This effectively

produces a map of the cell. Thus, the mode 1 eigenvector is a good indicator of the relative

importance of the high-frequency millimeter and submillimeter channels (e.g., 89, 166, 220, 340

and 410 GHz) for precipitation ceU mapping. While the variances of the channels above 89 GHz

fall off with frequency, the diffraction-limited resolution of these channels increases. From the

KL analysis, it appears that this tradeoff results in the the high frequency channels contributing

most of the variance to the dominant mode. As aperture size (and hence resolution) decreases,

the contribution from the low frequency channels further diminishes, illustrating the loss of

variance from these channels caused by spatial filtering.

For the eight channel GEO LSA system, approximately three KL modes provide signifi-

cant information (Figs. 16a-c). As seen in the eigenvectors for these channels (Figs. 17a-c), the

5-ram band oxygen channels respond in approximately the same manner to precipitation. Of

course, the primary purpose for the five oxygen channels would be for temperature sounding. If

precipitation were the only concern, only the 50.3 GHz channel would be used. The dominant

KL mode is primarily comprised of the difference between those channels that respond to pre-

cipitation by primarily increasing their brightness and those that respond by decreasing their

brightness. As the aperture size decreases, the SNR of the dominant mode drops by 2 dB for the

40-m case, then another 2 dB for the 15-m case(Fig. 18). The SNR for all higher order modes

are more significantly affected.

It is of interest to note that the eigenvectors for a given system (as computed using Eq. 18)

are relatively insensitive to the time of sampling, that is, all frames catalogued in Table 1 result in

similar sets of eigenvectors. (The SNR's differ, but this is the result of the size and intensity of the

precipitating region in relation to the clear air surrounding it.) Thus, the eigenvectors for a given

channel set can be considered to be quite "universal" in that they are unique to the system as

well as to the class of meteorological event (in this case, convective precipitation). This has also

been observed in llS-GHz imagery of storm cells, where it has been found that approximately

2-3 unique observable modes are available from realistic llS-GHz imaging systems observing

convective precipitation [23]. This suggests that retrieval algorithms can be constructed using a

reduced set of inputs variables, namely, the KL modes. In autdition, it suggests that compression

of images for coding and archival purposes can be accomplished with a high ratio of compression

(typically a factor of five to ten).
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5. Multispectral Antenna Pattern Deconvolution

The KL analysisprovidesa measure ofthe number of spectraldegreesof freedom pro-

duced by precipitationin the observed_A imagery.Itdoes not,however,providea measure of

the spatial-frequencyinformationlostby filteringthe _B imagery with the multispectralsensi-

tivitypattern.To quantifythe lossof spatial.frequencyinformationand at,the sa.metime, to

demonstrate the usefulnessoftheKL spectralmodes, a statisticallyoptimaldeconvolutionofthe

multispectralspot patternand the associatederrorcausedin theobservationand deconvolution

process is being investigated. The multispectral statistical deconvolution (MSD) operator is

n_ess_ily linear, and is formulated to minimize the expected error between the full-resolution

brightness imagery and the deconvolved imagery.

The basic procedure for MSD, described by Rosenkranz [31], requires convolving the

observed TA with an optimal shift-invariant deconvolution operator _ij to obtain an estimate

_s of Y_:

By requiring that the error between _B and _B be uncorrelated with the observations _A:

((_s:j - Ys:j )Y_;'i')= 0 (28)

i "i' :'where all possible values of ,2, ,.7 are considered, the minimum mea_-square-error estimator

can be shown to follow:

_i.i ** ('TAij ** _J'_A-,.-.i ) = (_[Bij ** ]'aX-i,-./) (29)

This is recognized as an application of the orthogonality principle in estimation theory. In con-

trast to the spatial averaging used in the KL analysis, the ensemble averaging must be performed

over a number of statistically independent images. The reason for the difference is that spatial

correlations (i.e., correlations between different pixels) are required to be incorporated into the

Itatistics in F.,q. 28, whereas the KL analysis required no inter-pixel statistical information.

Using the two-dimensional discrete Fourier transform (denoted by _), _ can be repre-

sented in the discrete spati_d-frequency domain as:

imax-I _nax-I
_.. 1

/max/max E E diJ e-j2_t(uilimu+v_Hmax) (30)
iffi0 .iffi0

where the integer variables u, v denote discrete spatial frequencies separated by increments of

(imaxAR) -1 and (jmaxAR) -1, respectively. Using the convolution-multiplication property of

Fourier transform pairs and Eq. 14, we can write D as:

_._ : _'fa,A: _'[ (_r_,,s,, r_,_._,)ll.r[ (r',,,,., r",_,__)])-'
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where _,_ is the transform of the gain matrix _0, _rsTm,,_ is the multidimensional power

spectral density mztrix for the brightness temperature vector TB, _,_,_,,_ is the multidimen-

sional power spectral density matrix for the observation noise vector W, and t is the Hermitian

trsmspose. Since W is white, we have:

imaxJmax
(32)

which is identical for all spatial frequencies u, u. The second-to-last step in Eq. 31 uses the sta-

tistical independence of the brightness process _B and observation noise _. Note that _raTa _

contains all information on both the spatiaJ and intrachannel spectral statistics of the random

brightness process. Here, the use of the multidimensional power spectral density matrix implic-

itly assumes thffit the brightness random process is wide-sense stationary. This is a slightly less

restrictive assumption than the ergodic assumption used in the KL analysis.

Thus, the optimal lineardeconvolutionbecomes:

(33)

with

_aO --" }"-'[_a._] (34)

where Jr-sis the two-dimensional discrete inverse Fourier transform. This is equivalent to Eq. 27,

except written in the spectra] domain. Defining the MSD error to be:

= - (3s)

The associated MSD spectral error covariance is [31]:

Note that this error is always less than the e-priori power spectral density for _a, illustrating

that the optimal deconvolution operator can only reduce the error spectral density• The spectral
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domainMSD operator uses spatial information from the highest resolution channels to improve

the deconvolution of the lower resolution channels• Such improvements are possible to the

extent that the brightnesses between the low frequency and high frequency channels exhibit

known correlations [32, 33, 34]. These correlations can be due to either horizontal rain cell

structure or spectra] scattering or absorption similarities.

The effects of antenna gain uncertainties are manifested as additional non-white obser-

vation noise. To see this, consider the gain matrix to be randomly perturbed by a random gain

error _:

where T is the assumed gain matrix from (for example, from Eq. 7). The observed antenna

temperature imagery now becomes:

= _o_,__**TB,,+ _',j

(38)

where 1_° includes contributions from both radiometric integration noise and gain pattern un-

certainties. The noise covariance matrix for _ becomes:

(_,,,n'i'-i,._'- ./') - _,,,,o + <(_-,,,-_, **l_.,,,o)(_a_,_,,j0_,"*_-,',,-i'))

(39)

aJ-n

6,6_+ I_-,,-,-,(i_r.r.,, + _)r(B _')').._,)

(40)

where the integration noise is assumed to be uncorrelated with the gain uncertainty and the

Averaging in the second line of Eq. 40 is taken over an ensemble of antenna gain perturbations.

In the spectral domain, the corresponding noise power spectral density matrix is:

_,,,,,,. = _,.,.. + <r_'.,,_r.T,,._,u_)+

:_/=
where the matrix "TeTs uv JS Hermitian square root of the brightness power spectral density

_T_ITS uv:

= _]/_t _/__rsrs,,v or, T_uv "_rsTsu, (42)
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The firstterm in Eq. 41 isthe fiatreceivernoisepower densityspectrum (Eq. 32)•The second

term describesadditionalnoisecaused by brightnessfluctuationsdue to cloudsand raincellsas

wellas surfacefeaturessuch as shorelines,smallislandsand icefloes.This portionofthe noise

spectrum isa low pass process,but isassumed to be zeromean so thatitprovidesvirtuallyno

contributionat zero spatialfrequency(u = 0,u ---0). The thirdterm describesuncertaintyin

the offsetsof the multispectralimagery caused by uncalibratedspinoverof the antenna beam

intocoldsp_e. This isa zero-frequencyor DC contributionto the noisepower spectrum.

Presumably, most gain perturbationswould be caused by deformationsin the reflector

and/or supportingstructure,and hence would affectallchannelsin a correlatedmanner. More-

over,the gain perturbationswithinany givenchannelare not expected to be independent over

Ml pixelvaluesi and j. Rather,whole sidelobesencompassing many pixelsmight increaseand

decreasesimultaneously.Thus, the matricesdevelopedin Eqs. 40 and 41 cannot be considered

to be diagonal,nor can _ be consideredto be uncorrelatedamong pixels.

Using Eqs. 36 and 41, the effects of antenna gain errors caused by both structural pertur-

bations and uncalibrated spiUover can be analyzed for their effects on the optimum deconvolved

brightness maps. However, to examine their effects on the retrieved precipitation parameters,

the end-to-end retrieval problem simulation outlined in the next section must be considered.

The MSD operator can also be developed as an optimal linear estimator in the spatial

domain:

=  'TA (43)

where _A is a vector consisting of all pixe]s from all channels having any signi_cant correlations

with the brightness at the location of interest. The determination matrix _ is given by:

_" = _T.7"A(_7",7"A + _.,,)-' (44)

_=a is the joint spatiai-spectrai covariance matrix between the multispectral vector signals o and

/_. it is noted, however, that this method results in particularly large determination matrices.

An advantage is that the brightness imagery need not considered to be stationary, that is, the

statisticscan be M]owed to varyfrom pointto pointwithinthe image. This would be usefulfor

analysisof imagery observed near boundariessuchas coastlines,frontsor image edges.

Currently, demonstrations of the spectral and spatial domain MSD operators using the

GCE data are being constructed. Of particular interest will be the effect of the noise-resolution

tradeoff first described by Backus and Gilbert [35]• Indeed, as the resolution AR of the decon-

volved map is reduced, the noise at each deconvolved pixe] increases. Note that this tradeoff will

be inconsequential for area-averaged linear parameter retrievals since the noise is averaged out

over the image again in the end. However, for _on-linear retrievals, there may be some optimal

34

ov PC  ,R  tJ Ll'f(



deconvolution grid spacing for a given system. The high resolution brightness maps and the

intermediate MSD step will allow this search to be performed.
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6. Precipitation Retrieval Simulation

This component of the PMMRS will demonstrate simulated precipitation retrieval algo-

rithms for multispectral low-pass filtered microwave imagery. Initial retrievals of precipitation

will use the single-step nonlinear statistical technique demonstrated in [23]. This technique is

based on a non-linear mapping of the Karhunen-Lo_ve image data _4 ij to various meteorological

parameters, for example, surface rain rate, integrated water content, integrated ice content and

mean ice particle size. The non-linear mapping is used to estimate a value for each of these

parameters at each pixel.

It is expected that more accurate retrieval methods will employ a statistical iterative

technique. This scheme has proved to be useful in retrieving relative humidity profiles [36, 37].

A statistical iterative retrieval technique based on the incrementally linear relationship between

small cha_nges in brightness temperature and small changes in surface precipitation rate (via

the forward raditive transfer process) is planned for implementation in the PMMRS (38]. This

technique is similar to the linear spectral domain MSD technique except that _,_ becomes an

incremental predictor matrix,/_uv, and _7'B_,u and _R,_ (where 6R = ._'[6r] is the incremental

e.huge in the rain rate field ri.,) replace TA,,,, and _B,,,,, respectively, in an iterated linear

statistical operator. This relationship, similar to (Eq. 43) is given by

6R,, = (45)

where 6_A u,, is the error between the observed antenna temperature and the computed antenna

temperature:

= 7'A. -

In the above, we assume that _vij is a known (nonlinear) function of rij. A requirement is that

a quick and accurate method of computing the forward transfer problem be available. This may

be based on a piecewise-linear approximation to the forward radiative transfer relationship.

To _ake full advantage of the spatial resolution available from high-frequency channels, it

may seem that multispectral deconvolution of the antenna gain pattern must be first performed.

However, the deconvolution aspect of the problem can be integrated into the nonlinear precip-

itation parameter retrieval using a spectral-domain nonlinear estimator. In these schemes, the

effects of antenna pattern errors will be examined by their effect on the modified instrument

noise ¢ovariance (Eq. 41). Iteration ceases when the 6_A_,, is zero to within the noise of the

sensor, as determined by _,,,,. To reduce the complexity of the calculation, the KL modes can

be used.
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7. Di_c_¢sion

At this time, the microphysical cloud and rainceli data compilation, forward radiative

transfer calculations, sensor observation simulations, and Karhunen-Lo_ve transformation and

degree of freedom calculations have been implemented. Although we cannot yet quantify the

available retrieval accuracy of candidate systems, the loss in number of observable degrees of

freedom as aperture size is reduced is readily seen. The effect of this information loss will be more

fully understood upon completion of the end-to-end retrieval simulation. Future implementation

of the deconvolution and parameter retrieval components of the PMMRS will improve the ability

to determine (quantitatively) the available accuracy of existing and future spaceborne passive

microwave meteorological systems and to design optimized sensor-specific multispectral retrieval

algorithms.

Acknow]edsements-This work has been supported by the Georgia Institute of Technology

and NASA grant NAS1-18925. The authors also thank N. Prasad, J. Simpson, and W.K. Tao

of the NASA Goddard Space Flight Center for providing the GCE data.

37



References

[I]Staelin,D.H., "PassiveMicrowave Techniques forGeophysicalSensing of the Earth from

Satellites",IEEE Trans.Ant. Prop.,vol.AP-29, no. 4,pp. 683-687,1981.

[2]Njoku, E.G., "PassiveMicrowave Remote Sensingof the Earth from Space - A Review",

Prac. IEEE, vol.70,pp. 728-749,July 1982.

[3]Gasiewski, A.J., "Microwave Ra_ative Transfer in Hydrometeors'`, in Atmospheric

Remote Sensingb,vMicrowave Radiometry, M.A. Janssen,(ed.),under contractforpubli-

cationby John Wiley and Sons, 1992.

{4]Galliano, J.A., and R.H. Platt, "An Imaging Passive Radiometer for Precipitation Retrieval

and Mesoscale Storm System Studies", Proceedings of the 1989 International Geoscience

and Remote Sensing Symposium (IGARSS), vol. 1, pp. 286-289, presented at the University

of British Columbia, Vancouver, B.C., July 10-14, 1989.

Is] Gasiewski, A.J., J.W. Barrett, P.G. Bonanni, and D.H. Staelin, "Aircraft-Based Radiomet-

ric Imaging of Tropospheric Temperature Profiles and Precipitation Using the 118.75-GHz

Oxygen Resonance", J. Appl. Meteor., vol. 29, no. 7, pp. 620-632, July, 1990.

[6]Staelin, D.H., A.H. Barrett, J.W. Waters, F.T. Barath, E.J. Johnston, P.W. Rosenkranz,

N.E. Gaut and W.B. Lenoir, "Microwave Spectrometer on the Nimbus 5 Satellite : Meteo-

rological and Geophysical Data", Science, vol. 182, pp. 1339-1341, Dec. 28, 1973.

[7]Njoku, E.G., J.M. Stacey, and F.T. Barath, "The Seasat Multichannel Microwave Radiome-

ter (SMMR): Instrument Description and Performance", IEEE J. Oceanic Eng., vol. OE-5,

no. 2, pp. 100-115, April, 1980.

[8] Hollinger, J.P., J.L. Pierce, and G.A. Poe, "SSM/I Instrument Evaluation", IEEE Trans.

Geosci. Remote Sensing, vol. 28, No. 5, pp. 781-790, Sept., 1990.

fg]Kummerow, C., R.A. Mack, _d I.M. Hakkarinen,"A Self-ConsistencyApproach to Im-

prove RainfallRate Estimationfrom Space",J. Appl. Meteor.,vol.28, no. 9,pp. 869-884,

September, 1989.

[i0]Tao, W.K., J. Simpson, S. Lang, M. McCumber, R.F. Adler and R. Penc, "An Algorithm

to Estimate the Heating Budget from Vertical Hydrometeor Profiles", J. Appl. Meteor.,

vol. 29, no. 12, pp. 1232-1244, December, 1990.

[11] D.H. Staelin and P.W. Rosenkranz (eds.), "Applications Review Panel: High Resolution

Passive Microwave Satellites Final Report", Research Laboratory of Electronics, Mas-

sachusetts Institute of Technology, April, 1978.

38



[12} Stutzmxn, W.L., and G.S. Brown (eds.), "The Scie,ce Benefits of and the Antenna Re-

quirements for Microwave Remote Sensing from Geostationary Orbit", NASA Contractor

Report 4408, Prepared by the Virginia Polytechnic and State University, Biacksburg, VA

for the NASA Langley Research Center, 1991.

[13} "Geosynchronous Microwave Atmospheric Sounding Radiometer (MASR) Feasibility Stud-

ies", Hughes Aircraft Co. final report for contracts NAS 5-24082 and NAS 5-24087, vol. I

(Management Summary), Hughes ref. no. D864?/D9236, January, 1978.

[14] "Geosynchronous Microwave Precipitation Radiometer - Phase A Study Report", JPL re-

port JPL D-8136, Jan. 1991.

[15] Simpson, J., R.F. Adler, and G.R. North, "A Proposed Tropical Rainfall Measuring Mission

(TRMM) Satellite", Bull. Amer. Meteor. Soc., vol 69, no. 3, pp. 278-295, 1988.

[16} ]_OS Reference Handbook, D.Dokken (ed.), NASA Goddard Space Flight Center, Publica-

tion NP-144, May 1991.

[17] Wilson, Wj., personal communication.

[18] Le Vine, D.M., M. Kao, A.B. Tanner, C.T. Swift, and A. Griflis, "Initial Results in the

Development of a Synthetic Aperture Radiometer", IEEE Trans. Geosci. Remote Sensing,

vol. 28, no. 4, pp. 614-619, July 1990.

[]9} Jackson, T.J. and T.J. Schmugge, "Passive Microwave Remote Sensing System for Soil

Moisture Research: Some supporting Research", IEEE Trans. Geosci. Remote Sensing,

vol. 27, no. 2, pp. 225-235, March 1989.

120] Wilheit, T.T., A.T.C. Chang, M.S.V. Rao, E.B. Rodgers, and J.S. Theon, "A Satellite

Technique for Quantitatively Mapping Rainfall Rates over the Oceans", J. Appl. Meteor.,

vol. 16, no. 5, pp. 551-560, 1977.

[21] Gasiewski, A.J. and Staelin, D.H., "Science Requirements for Passive Microwave Sensors on

Earth Science Geostationary Platforms", Proceedings of the NASA Technology Workshop

for Earth Science Geostationary Platforms, NASA Conference Publication 3040, presented

at the NASA Langley Research Center, Hampton, VA., September 21-22, 1988. pp. 37-53,

1988.

[22] Tao, W.K., and J. Simpson, "Modelling Study of a Tropical Squall-Type Convective Line",

J. Arm. Sci., vol. 46, no. 2, pp. 177-202, Jan. 15, 1989.

[23] Gasiewski, A.J., and D.H. Staelin, "Statistical Precipitation Cell Parameter Estimation

Using Passive I18-GHz O2 Observations", J. Geophys. Res., vol. 94, no. D15, pp. 18367-

18378, December, 1989.

39



[24] Smith, P.L., Equivalent Radar ReflectivJty Factors for Snow and Ice Particles, J. Cli. Appl.

Met., _3, 1258, 1984.

[25] Guiewski, A.J., and D.H. Staelin, "Numerical Modelling of Passive Microwave O_ Obser-

vLtions Over Precipitation", Radio Sci, vol. 25, no. 3, pp. 217-235, 1990.

[26] Silver, S. (el.), Microwave Antenna Theory, and Design, London: Peter Perigrinus, Ltd.,

1984.

[27] Kraus, .I.D., Radioastronomy, 2 nd el., Cygnus-Quasar Books: Powell OH, 1986.

[28] Ruf, C.S., C.T. Swift, A.B. Tanner and D.M. Le Vine, "Interferometric Synthetic Aperture

MlcrowLve Radiometry for the Remote Sensing of the Earth", IEEE Trans. Geosci. Remote

Sensing, vol. 26, no. 5, pp. 598-612, Sept., 1988.

[29] Gonzal_, R.C., and P.A. Wintz, Dis;ira] Imase Processing, 2nd ed., Addison-Wesley Pub-

fishing Co., Reading MA, 1987.

i

[30] Ready, P.J., and P.A. Wintz, "Information Extraction, SNR Improvement, and Data Com-

preuion in Multispectral Imagery", IEEE Trans. Comm., vol. COM-21, no. 10, pp. 1123-

1130, 1973.

[31] Roxnkranz, P.W., "Inversion of Data from Diffraction-Limited Multiwavelength Remote

Sensors, 1, Linear Cue," Radio Science, vol. 13, no. 6, pp. 1003-1010, Nov.-Dec., 1978.

[32] Poe, G.A., "Optimum Interpolation of Imaging Microwave Radiometer Data", IEEE Trans.

Geosci. Remote Sensing, vo]. 28, no. 5, pp. 800-810, Sept., 1990.

[33] Farar, M.R., and E.A. Smith, "Spatial Resolution Enhancement of Terrestrial Features Us-

ing Deconvolvel SSM/! Microwave Brightness Temperatures", IEEE Trans. Geosci. Remote

Sensing, vol. 30, no. 2, pp. 349-355, March 1992.

[34] Robinson, W.D., C. Kummerow, and W.S. Olson, "A Technique for Enhancing and Match-

ing the Pmmlutlon of Microwave Measurements from the SSM/I Instrument", IEEE Trans.

Geosci. Remote Sensing, vol. 30, no. 3, pp. 419-429, May 19_2.

[35] Backus, G., and F. Gilbert, "Uniqueness in the Inversion of Inaccurate Gross Earth Data",

Phil. Trans. Roy. Soc. London, vol. A266, pp. 123-192, 1970.

[36] Kuo, C.C., "Statistics] ]terative Scheme for Estimating Atmospheric Relative Humidity

Profiles from Microwave Radiometric Measurements" S.M. thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge,

MA., Dec., 1988.

4O



[37]Kuo, C.C., _md D.H. Staelin,"StztisticalIterativeScheme for Estimating Atmospheric

RelativeHumidity Profiles",submitted to IEEE Trans. Geosci.Remote Sensing, Sept.,

1990.

[38]Sch_erer,G. and T.T. Wilheit,"A PassiveMicrowave Technique for Profilingof Atmo-

sphericWater Vapor", Radio Science,vol.14,no. 3,pp. 371-375,May-June 1979.

41



Table 1: Catalogue of s_,nthesized
Horizontal

Brightness

Map Set

GCE I

GCE 2

GCE 3

GCE 4

GCE 5

CP-2

30

30

30

30

30

9

Resolution

AR (kin)

briEhtness imagery, used in the numerical simulations.
Image

Size

(kin) Comments

1.5

1.5 96x96

1.5 96x96

1.5 96x96

1.5 96x96

1.0 41x41

'96x96 Tao & Simpson GCE data, t = 126 min

Tao & Simpson GCE data, t = 138 rain

Tao & Simpson GCE data, t = 174 min

Tao & Simpson GCE data, t = 210 rain

Tao & Simpson GCE data, t = 234 min

COHMEX CP-2 data, July II, 1986

(window channels only)

Table 2: Scaling factor a(p) and aperture efl_ciencies for various aperture taper parameters p.
Aperture

Efficiency

p a ,1.4(%)
o J 1.o21 loo
1 1.271 75

2 I 1.471 56

3, 1.65 I 44
4 i 1.81 [ 36

i |
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Table 3: System sensitivity parameters for the MIMR simulations. The integration time is

bMed on the single-spot integration time for sampling at the Nyquist resolution of the highest

frequency channel.

Channel I Frequency I Bandwidth _ Integration
_z) (Mgz) _(K)] Time (msec)

MIMR: six channels, D = 1.6 m, Rs = 0.74 km, R 3 dB
' OoUU

I 0.030

2

3

4

5

6

1

2

3

4

5

6

m

0'$S n

__
F= 1.8__.___9

6.00

10.69

18.70

23.80

36.50

89.00

6.00

10.69
18.70

23.80
36.,50

89.00

20 1250

20 1350

200 r4oo
400 [400

1000 1500
6000 1650

0.32

0.45

0.16

0.12

0.10

0.05

20 [250
20 135o

200 _400

400 400

1000 ,500

6000 1650

kin, R3.d .B, 1
0.0039

i = 0.69

0.88

1.23

0.44

0.33

0.27

0.14

(TT.

(K)
km

0.16

0.22

0.079

0.059

0.049

0.024

km

0.16

0.22

0.079

0.059

0.049

0.024
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Table 4: System sensitivity parameters for the LSA simulations. The integration time is based on

the single-spot integration time for sampling at the Nyquist resolution of the highest frequency

channel.

[ IChannel Frequency Ba_dwidthiTo, Integration eSS. oT.

# (GHz) (MHz) ! IK_ Time (msec) (K) (K)

LSA: nine channels, D = 15 m, Rs = 0.88 kin, R3.dB N _2:22._ km

6

7

8

9

LSA:

6.00

10.69

18.70

36.50

89.00

166.00

220.00

340.00

410.00

20 [ 250

20 I 350

200 I 400

1000 _ 500

6000 I 650

4000 I1000

3000 r2ooo

3000 L3000

3000 [5000

1.2

n"_channels, D = 40 m, Rs

1.63 0.95

2.29 1.33

0.83 0.48

0.46 0.27

0.24 0.14

0.46 0.27

1.07 0.62

1.60 0.93

2.67 1.56

= 0.33 km, R3.dB N = 0.83 km
1
2

3
4

5
6

7
8

9

6.00

10.69

18.70

36.50

89.00

166.00

220.00

340.00

410.00

20

20

200

1000

6000

4000

3000
3000

3000

F 250

I 350

400

!5oo
i 650

I1000

!2000
i3000
_5000

0.16 4.34

6.10

2.21

1.22

0.64

1.22

2.85

4.26

7.11

0.95
1.33

0.48
0.27

0.14
0.27

0.62
0.93

1.56

LSA:

1

2

3
4

5

6

7

8

LSA:

I

2

3

4

5

6

7

8

eight channels, D = 15 m, Rs = 6.53

18.700

23.800

36.500

50.300

52.800

53.596

54.400

54.940

200 i 400

400 400

I000 500

180 550

400 550

170 550

400 550

400 550

km, R3-dB N

65.3

= 16.6 km

0.11 0.48

0.078 0.34

0.062 0.27

0.16 0.70

0.11 0.48

0.16 0.70

0.11 0.48

0.11 0.48

eight channels, D = 40 m, Rs

18.700 200
23.800 400

36.500 1000

50.300 180
52.800 400

53.596 170

54.400 400

54.940 400

= 2.45

400

400

500

550

550

550

550

550

kin, R3.dB 1N = 6.22 km
9.18 0.29 0.48

0.21 0.34

0.16 0.27
0.43 0.70

0.29 0.48
0.43 0.70

0.29 0.48

0,29 0.48
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Figure I:Schematic diagram of the PMMRS.

Figure 2: Computed window-channel brightness maps for three GCE simulations: (a) GCE 2,

(b) GCE 3, (c) GCE 4, and for the COHMEX CP-2 data (d). The channel frequencies (in GHz)
_e indicated.

Figure 3: Computed brightness maps for channels near the microwave oxygen lines for GCE 3.

The channel frequencies(inGHz) are indicated.

Figure 4: Computed brightness maps for channels near the microwave water vapor lines for

GCE 3. The channel frequencies (in GHz) are indicated.

Figure 5: Scan patterns of canonical (a) geosynchronous and (b) low-F.,_rth orbit imaging sys-
tems.

Figure 6: Energy distribution functions for linearly-polarized circular apertures of varying am-

plitude tapers p, indicating efficiencies at the 3-dB beamwidth (r_) a_nd first null (.).

Figure 7: MIMR brightness temperature imagery, as would be observed from low Earth orbit:

(a) full resolution, (b,c) after convolution with the gain pattern of a circulax 4.4-m and 1.6-m

quadratically-tapered aperture distribution, respectively. The 3-dB spot sizes (in kin, FWHM)

axe indicated for each frequency in (b) and (c).

Figure 8: Representative LSA brightness temperature imagery for nine window channels, as

would be observed from geosynchronous orbit: (a) full resolution, and (b,c) after convolution

with the gain patterns of circular 40-m and 15-m quadratically-tapered aperture field distribu-

tions, respectively. The 3-dB spot sizes (in kin, FWHM) are indicated for each frequency in (b)

and (c).

Figure 9: Representative LSA brightness temperature imagery for eight low-frequency channels,

as would be observed from geosynchronous orbit: (a) full resolution, and (b,c) after convolution

with the gain patterns of circular 40-m and 15-m quadratically-tapered aperture field distribu-

tions, respectively. The 3-dB spot sizes (in kin, FWHM) are indicated for each frequency in (b)

sad (c).

Figure 10: Ramk-ordered KL mode imagery for the six-channel MIMR system: (a) full resolution,

(b,c) after convolution with the gain pattern of a circular 4.4-m rand 1.6-m quadratica/ly-tapered

aperture distribution, respectively. The five most dominant modes rare shown with the respective

SNR's indicated above each image.

Figure 11: Three most dominant rank-ordered eigenvectors for the six-channel MIMR system:

(&) full resolution, (b,c) after convolution with the gain pattern of a circular 4.4-m and 1.6-m

quadratically-tapered aperture distribution, respectively.

Figure 12: SNR ranking for the full-resolution and convolved MIMR imagery.
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Figure 13: Rank-ordered KL mode imagery for the LSA nine-channel GEO system: (a) full res-

olution, (b,c) after convolution with the gain pattern of a circular 40-m and 15-m quadratically-

tapered aperture distribution, respectively. The five most dominant modes are shown with the

respective SNR's indicated above each image.

Figure 14: Three most dominant rank-ordered eigenvectors for the nine-channel LSA system:

(a) full resolution, (b,c) after convolution with the gain pattern of a circular 40-m and 15-m

quadratically.tapered aperture distribution, respectively.

Figure 1,5: SNR ranking for the full-resolution and convolved nine-channel LSA imagery.

Figure 16: Rank-ordered KL mode imagery for the LSA eight-channei GEO system: (a) ful] res-

olution, (b,c) after convolution with the gain pattern of a circular 40-m and 15-m quadratically-

tapered aperture distribution, respectively. The live most dominant modes are shown with the

respective SNR's indicated above each image.

Figure 17: Three most dominant rank-ordered eigenvectors for the eight-channel LSA system:

(a) full resolution, (b,c) alter convolution with the gain pattern of a circular 40-m and 15-m

quadratically-tapered aperture distribution, respectively.

Figure 18: SNR ranking for the full-resolution and convolved eight-channel LSA imagery.
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Figure 5: Scan patterns of canonical (a) geosynchronous and (b) low-Earth orbit imaging sys-

tems.
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